Abstract
Previous research suggested that lameness in growing pigs could be reduced using feeding strategies, such as limiting growth rate and supplementing trace minerals (TM) and (or) methionine (Met). The present study evaluates effects of 1) TM and Met and 2) limiting total lysine (Lys) during the rearing phase (90 d) of gilts (as a means to limit growth rate) on lameness, performance, and sow claw health and productivity (to first parity). Gilts (n = 240; 58.0 ± 11.1 kg body weight [BW]) were blocked, distributed into pens of 10 gilts, and pens were allocated to a 2 × 2 factorial arrangement. Factors were: 1) control or TM plus Met, which provided additional 10, 20, and 50 mg/kg of chelated copper, manganese, and zinc, respectively (0.1%, Aplomotec Plus, Tecnología & Vitaminas, S.L.; Alforja, Spain), and a 1.01 Met:Lys ratio and 2) standard Lys was formulated to meet growth requirements or low Lys to 19% below growth requirements. Feeding was provided through two phases, first between 119 and 163 d of age (phase I) and the second between 163 and 209 d of age (phase II). Diets had 2.43 and 2.31 Mcal net energy/kg for phases I and II, respectively, and were offered ad libitum. Low Lys did not affect feed intake but rather reduced average daily gain (ADG) by 6.35% and the final BW by 3.80% compared with standard Lys (P < 0.001). Low Lys reduced ADG (P < 0.001) and gain:feed (P = 0.012) during phase I but not during phase II. Lameness prevalence was 7.92% during rearing and increased with time (P < 0.001). Final BW (151 kg) and ADG (989 g) were similar (P > 0.05) whether gilts displayed lameness or not. Lameness was low in severity and not affected by dietary factors. However, TM- plus Met-fed gilts were 19.2 kg heavier (P = 0.016) than were control at lameness detection. On the sow farm, there was no evidence for differences in lameness or claw lesions among previous dietary treatments. In conclusion, lameness prevalence during the rearing phase was similar, independent of TM plus Met supplement, low Lys, or the interaction. Insufficient reduction of ADG and low severity in lameness may have limited the potential of dietary treatments. Moreover, a greater deficiency of Lys would be needed to achieve the degree of growth reduction previously reported to lessen lameness through feed restriction.