Abstract:The computational prediction of nonlinear interactive instabilities in three-dimensional boundary layers is obtained for a warm dense plasma boundary layer environment. The method is applied to the Richtmyer-Meshkov flow over the rippled surface of a laser-driven warm dense plasma experiment. Coupled, nonlinear spectral velocity equations of Lorenz form are solved with the mean boundary-layer velocity gradients as input control parameters. The nonlinear time series solutions indicate that after an induction period, a sharp instability occurs in the solutions. The power spectral density yields the available kinetic energy dissipation rates within the instability. The application of the singular value decomposition technique to the nonlinear time series solution yields empirical entropies. Empirical entropic indices are then obtained from these entropies. The intermittency exponents obtained from the entropic indices thus allow the computation of the entropy generation through the deterministic structure to the final dissipation of the initial fluctuating kinetic energy into background thermal energy, representing the resulting entropy increase.