Formula Student Car (FS) is an international race car design competition for students at universities of applied sciences and technical universities. The winning team is not the one that produces the fastest racing car, but the group that achieves the highest overall score in design, racing performance. The arrangement of internal components for example, predicting aerodynamics of the air intake system is crucial to optimizing car performance as speed changes. The air intake system consists of an inlet nozzle, throttle, restrictor, air box and cylinder suction pipes (runners). The paper deals with the use of CFD numerical simulations during the design and optimization of components. In this research article, two main steps are illustrated to develop carefully the design of the air box and match it with the suction pipe lengths to optimize torque over the entire range of operating speeds. Also the current intake system was assessed acoustically and simulated by means of 1-D gas dynamics using the software AVL-Boost. In this manner, before a new prototype intake manifold is built, the designer can save a substantial amount of time and resources. The results illustrate the improvement of simulation quality using the new models compared to the previous AVL-Boost models.The results illustrate the improvement of simulation quality using the new models compared to the previous AVL-Boost models.