2022
DOI: 10.1142/s0218127422500675
|View full text |Cite
|
Sign up to set email alerts
|

Effects of Amplitude, Maximal Lyapunov Exponent, and Kaplan–Yorke Dimension of Dynamical Oscillators on Master Stability Function

Abstract: Obtaining the master stability function is a well-known approach to study the synchronization in networks of chaotic oscillators. This method considers a normalized coupling parameter which allows for a separation of network topology and local dynamics of the nodes. The present study aims to understand how the dynamics of oscillators affect the master stability function. In order to examine the effect of various characteristics of oscillators, a flexible oscillator with adjustable amplitude, Lyapunov exponent,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?