Enhancing global agricultural sustainability critically requires improving the physicochemical properties of saline–alkali soil. Biochar has gained increasing attention as a strategy due to its unique properties. However, its effect on the physicochemical properties of saline–alkali soil varies significantly. This study uses psychometric meta-analysis across 137 studies to synthesize the findings from 1447 relatively independent data sets. This study investigates the effects of biochar with different characteristics on the top 20 cm of various saline–alkali soils. In addition, aggregated boosted tree (ABT) analysis was used to identify the key factors of biochar influencing the physicochemical properties of saline soils. The results showed that biochar application has a positive effect on improving soil properties by reducing the sodium adsorption ratio (SAR) and the exchangeable sodium percentage (ESP) by 30.31% and 28.88%, respectively, with a notable 48.97% enhancement in cation exchange capacity (CEC). A significant inverse relationship was found between soil salinity (SC) and ESP, while other factors were synergistic. Biochar application to mildly saline soil (<0.2%) and moderately saline soil (0.2–0.4%) demonstrated greater improvement in soil bulk density (SBD), total porosity (TP), and soil moisture content (SMC) compared to highly saline soil (>0.4%). However, the reduction in SC in highly saline soil was 4.9 times greater than in moderately saline soils. The enhancement of soil physical properties positively correlated with higher biochar application rates, largely driven by soil movements associated with the migration of soil moisture. Biochar produced at 401–500 °C was generally the most effective in improving the physicochemical properties of various saline–alkali soils. In water surplus regions, for mildly saline soil with pH < 8.5, mixed biochar (pH 6–8) at 41–80 t ha−1 was the most effective in soil improvement. Moreover, in water deficit areas with soil at pH ≥ 8.5, biochar with pH ≤ 6 applied at rates of >80 t ha−1 showed the greatest benefits. Agricultural residue biochar showed superior efficiency in ameliorating highly alkaline (pH ≥ 8.5) soil. In contrast, the use of mixed types of biochar was the most effective in the amelioration of other soil types.