Manganese porphyrins have several therapeutic/imaging applications, including their use as radioprotectants (in clinical trials) and as paramagnetic MRI contrast agents. The affinity of porphyrins for lipid bilayers also makes them candidates for cell/liposome labelling. We hypothesised that metalation with the positron emission tomography (PET) radionuclide 52Mn (t1/2 = 5.6 d) would allow long-term in vivo biodistribution studies of Mn-porphyrins as well as a method to label and track cells/liposomes, but methods for fast and efficient radiolabelling are lacking. Several porphyrins were produced and radiolabelled by addition to neutralised [52Mn]MnCl2 and heated using a microwave (MW) synthesiser and compared with non-MW heating. MW radiosynthesis allowed >95 % radiochemical yields (RCY) in just 1 h. Conversely, non-MW heating at 70 oC for 1 h resulted in low RCY (0 – 25 % RCY) and most porphyrins did not reach radiolabelling completion after 24 h. Formation of the 52Mn-complexes were confirmed with radio-HPLC by comparison with their non-radioactive 55Mn counterparts. Following this, several 52Mn-porphyrins were used to radiolabel liposomes resulting in 75 – 86 % labelling efficiency (LE). Two lead 52Mn-porphyrins were taken forward to label MDA-MB-231 cancer cells in vitro, achieving ca. 11 % LE. After 24 h, 32 – 45 % of the 52Mn-porphyrin was retained in cells. In contrast to standard methods, MW heating allows the fast synthesis of 52Mn-porphyrins with >95% radiochemical yields that avoid purification. 52Mn-porphyrins also show promising cell/liposome labelling properties. Our reported technique can potentially be exploited for the in vivo imaging of Mn-porphyrin therapeutics, as well as for the accurate in vivo quantification of Mn-porphyrin MRI agents.