In the heart, the endothelin (ET)/endothelin-receptor system is markedly involved in pathophysiological mechanisms underlying various cardiac diseases. Based upon pharmacological studies both ET-receptor subtypes take part in the regulation of coronary vascular tone, however, their detailed cellular distribution in the coronary vascular bed based upon direct mRNA and protein detection is unknown. This issue was addressed in the rat heart by means of non-radioactive in situ hybridization, RT-PCR, and immunohistochemistry. Expression of vascular ET(A)-receptors was detected in arterial smooth muscle and capillary endothelium while ET(B)-receptors were present in arterial, venous, and capillary endothelium, and in arterial and venous smooth muscle cells. This differential distribution of the ET-receptor subtypes supports the concept that ET(A)- as well as ET(B)-receptors mediate arterial vasoconstriction, while postcapillary vascular resistance is exclusively regulated by ET(B)-receptors. The observed capillary endothelial expression of the ET(A)-receptor correlates with the known ability of ET(A)-receptor antagonists to attenuate increases in cardiac microvascular permeability during endotoxin shock and ischemia/reperfusion injury.