Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The aim of the study. The aim of the study was to review publication about microbiome of chicken manure, chicken manure compost, as well as soil and crop microbiome after compost addition to soil as a fertilizer. Methodology. A search in the bibliographical data bases PubMed and elibrary.ru was performed using the keywords pertaining to the topic of the article. Main results. The results about the chicken manure microbiome, obtained by high throughput sequencing, showed that the chicken gut microbiome is dominated by bacteria of the Firmicutes and Bacteroidetes phyla; some regional chicken populations were found to have Clostridium, Lactobacillus, Eubacterium, Bacteroides, Escherichia coli, Prevotella, Selenomonas, Streptococcus, Megasphaera, Fusobacterium и Bifidobacterium as the main representatives of the gut microbiome. However, chicken manure can contain bacteria with antibiotic resistance genes, as antibiotics are increasingly used in the poultry industry to stimulate production. In general manure composting can be regarded as environmentally safe method for transforming various organic wastes into organic fertilizers. As increasing output of the poultry industry, which inevitably includes manure, increased the interest to its composting, and recent years have seen unprecedented number of research, dealing with various details of manure composting, such as duration, hydrothermal conditions, added bulking materials, microbiological preparations, abundance of the antibiotic resistance genes, and so on. However, the studies of soil and crop microbiome after soil fertilization with chicken manure compost have so far been rather scarce, resulting in ambiguous conclusions, i.e. about positive or no effect of the compost addition. The effect is determined by species, breed, age, rearing and manure composting technology, as well as by crop and its cultivar, agricultural practices and soil specifics. Conclusions. Chicken manure contains taxonomically diverse microbiome that can be changed during composting. Microbiota of chicken manure and its compost with their great microbial species richness can contain bacteria, carrying antibiotic resistance genes. Dispersal of such components of the compost resistome in environment via compost addition to agricultural soils should be regarded as a growing biological hazard, threatening the efficient use of antibiotics for treating bacterial infections in in veterinary and medicine. Therefore increasing poultry production urges for assessing the risks and evaluating the scope of the threat, as well as estimating and establishing permissible limits of pathomicrobiotic load of the poultry litter manure and compost, using up-to-date metagenomic techniques. The greatest concern is about spreading antibiotic resistance genes into the marketable crop components, consumed raw; consequently, alongside with studying microbiota of the compost-receiving agricultural soil as a source of dust, microbiome research should be also focused crop phytobiome where crops are produced under addition of composts, obtained with manure of the antibiotic-treated poultry during industrial production.
The aim of the study. The aim of the study was to review publication about microbiome of chicken manure, chicken manure compost, as well as soil and crop microbiome after compost addition to soil as a fertilizer. Methodology. A search in the bibliographical data bases PubMed and elibrary.ru was performed using the keywords pertaining to the topic of the article. Main results. The results about the chicken manure microbiome, obtained by high throughput sequencing, showed that the chicken gut microbiome is dominated by bacteria of the Firmicutes and Bacteroidetes phyla; some regional chicken populations were found to have Clostridium, Lactobacillus, Eubacterium, Bacteroides, Escherichia coli, Prevotella, Selenomonas, Streptococcus, Megasphaera, Fusobacterium и Bifidobacterium as the main representatives of the gut microbiome. However, chicken manure can contain bacteria with antibiotic resistance genes, as antibiotics are increasingly used in the poultry industry to stimulate production. In general manure composting can be regarded as environmentally safe method for transforming various organic wastes into organic fertilizers. As increasing output of the poultry industry, which inevitably includes manure, increased the interest to its composting, and recent years have seen unprecedented number of research, dealing with various details of manure composting, such as duration, hydrothermal conditions, added bulking materials, microbiological preparations, abundance of the antibiotic resistance genes, and so on. However, the studies of soil and crop microbiome after soil fertilization with chicken manure compost have so far been rather scarce, resulting in ambiguous conclusions, i.e. about positive or no effect of the compost addition. The effect is determined by species, breed, age, rearing and manure composting technology, as well as by crop and its cultivar, agricultural practices and soil specifics. Conclusions. Chicken manure contains taxonomically diverse microbiome that can be changed during composting. Microbiota of chicken manure and its compost with their great microbial species richness can contain bacteria, carrying antibiotic resistance genes. Dispersal of such components of the compost resistome in environment via compost addition to agricultural soils should be regarded as a growing biological hazard, threatening the efficient use of antibiotics for treating bacterial infections in in veterinary and medicine. Therefore increasing poultry production urges for assessing the risks and evaluating the scope of the threat, as well as estimating and establishing permissible limits of pathomicrobiotic load of the poultry litter manure and compost, using up-to-date metagenomic techniques. The greatest concern is about spreading antibiotic resistance genes into the marketable crop components, consumed raw; consequently, alongside with studying microbiota of the compost-receiving agricultural soil as a source of dust, microbiome research should be also focused crop phytobiome where crops are produced under addition of composts, obtained with manure of the antibiotic-treated poultry during industrial production.
To implement the balance system of cultivated land in occupation and supplement and to adhere to the principle of “supplement the occupied cultivated land of high quality with the one bearing same quality”, in the thesis, a field experiment was conducted to study the effects of woody peat on soil physical, chemical, and biological properties of the plough layer and its crop yield. Furthermore, the correlation between soil indexes and crop yield under the best fertilization mode through the addition of the natural material of woody peat instead of lengthy cultivation of the plough layer to rapidly construct a high-quality plough layer and solve the practical problem that the natural endowment of newly reclaimed cultivated land is far less than the occupied high-quality cultivated land was explored. The land remediation project of Fuping County, Hebei Province, was taken as the experimental area, and the five most representative and effective datasets were selected and studied. The results demonstrated that the addition of woody peat and rotten straw could reduce soil particle size and bulk density and alleviate soil viscosity and acidification. An increase in soil organic matter, soil microbial biomass carbon (MBC), alkali-hydrolyzable nitrogen, available phosphorus, and available potassium and a decrease in the heavy metal content were also observed. The results indicated that the application of woody peat achieved the expected effect of the rapid construction of a high-quality plough layer. The best mode of fertilization was A2, which provided a good reference for the rapid construction of a high-quality plough layer in the future. The analysis of the correlation between soil indexes and crop yield illustrated that the organic matter content, soil available nutrients, and crop yield had a significant positive correlation; the organic matter content and soil available nutrients showed the same tendency, which suggests that soil organic matter content and soil fertility level are closely related and that soil fertility plays a decisive role in crop yield under the same external conditions. Woody peat exerted an eminent influence on the organic matter content and soil available nutrients to determine the change in crop yield, which provides a reliable basis for future research on land improvement projects to increase crop yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.