Background
Bacteria have been reported to exhibit complicated morphological colony patterns on solid media, depending on intracellular, and extracellular factors such as motility, cell propagation, and cell-cell interaction. We isolated the filamentous cyanobacterium, Pseudanabaena sp. NIES-4403 (Pseudanabaena, hereafter), that forms scattered (discrete) migrating colonies on solid media. While the scattered colony pattern has been observed in some bacterial species, the mechanism underlying such a pattern still remains obscure.
Results
We studied the morphology of Pseudanabaena migrating collectively and found that this species forms randomly scattered clusters varying in size and further consists of a mixture of comet-like wandering clusters and rotating disks. Quantitative analysis of the formation of these wandering and rotating clusters showed that bacterial filaments tend to follow trajectories of previously migrating filaments at velocities that are dependent on filament length. Collisions between filaments occurred without crossing paths, which enhanced their nematic alignments, giving rise to bundle-like colonies. As cells increased and bundles aggregated, comet-like wandering clusters developed. The direction and velocity of the movement of cells in comet-like wandering clusters were highly coordinated. When the wandering clusters entered into a circular orbit, they turned into rotating disks, maintaining a more stable location. Disks may rotate for days, and the speed of cells within a rotating disk increases from the center to the outmost part of the disk. Using a minimal agent-based model, we reproduced some features of Pseudanabaena migrating clusters.
Conclusion
Based on these observations, we propose that Pseudanabaena forms scattered migrating colonies that undergo a series of transitions involving several morphological patterns. A minimal agent-based model is able to reconstruct some features of the observed migrating clusters.