We previously demonstrated that olanzapine-induced desensitization of 5-HT2A receptor-stimulated phospholipase C (PLC) activity is associated with increases in RGS7 protein levels both in vivo and in cells in culture, and the increase in RGS7 is dependent on activation of the JAK-STAT pathway in cells in culture (Muma, et al., 2007;Singh, et al., 2007). In the current study, we found that desensitization of 5-HT2A receptor-stimulated PLC activity induced by olanzapine is dependent on activation of the JAK-STAT pathway. Similar to olanzapine, clozapine-induced desensitization of 5-HT2A receptor signaling is accompanied by increases in RGS7 and activation of JAK2. Treatment with the selective 5-HT2A receptor antagonist MDL100907 also increased RGS7 protein levels and JAK2 activation. Using a JAK2 inhibitor AG490, we found that clozapine and MDL100907-induced increases in RGS7 are dependent on activation of the JAK-STAT pathway. Olanzapine, clozapine, and MDL100907 treatment increased mRNA levels of RGS7. Using a chromatin immunoprecipitation assay we found STAT3 binding to the putative RGS7 promoter region. Taken together, olanzapine-induced activation of the JAK-STAT pathway, and STAT3 binding to the RGS7 gene could underlie the increase in RGS7 mRNA which could subsequently increase protein expression. Furthermore, the increase in RGS7 protein could play a role in the desensitization of 5-HT2A receptor signaling by terminating the activated Gαq/11 proteins more rapidly. Overall, our data suggest that the complete desensitization of 5-HT2A receptor-stimulated PLC activity by olanzapine, clozapine and MDL100,907 requires activation of the JAK-STAT pathway, which in turn increases RGS7 expression likely by direct transcriptional activity of STAT3.