Here we describe a novel group of basal forebrain (BF) neurons expressing neuronal PAS domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. Immunohistochemical staining in Npas1-cre-2A-TdTomato mice revealed BF Npas1+neurons are distinct from well-studied parvalbumin or cholinergic neurons. Npas1 staining in GAD67-GFP knock-in mice confirmed that the vast majority of Npas1+neurons are GABAergic, with minimal colocalization with glutamatergic neurons in vGlut1-cre-tdTomato or vGlut2-cre-tdTomato mice. The density of Npas1+neurons was high, 5-6 times that of neighboring cholinergic, parvalbumin or glutamatergic neurons. Anterograde tracing identified prominent projections of BF Npas1+neurons to brain regions involved in sleep-wake control, motivated behaviors and olfaction such as the lateral hypothalamus, lateral habenula, nucleus accumbens shell, ventral tegmental area and olfactory bulb. Chemogenetic activation of BF Npas1+neurons in the light (inactive) period increased the amount of wakefulness and the latency to sleep for 2-3 hr, due to an increase in long wake bouts and short NREM sleep bouts. Non-REM slow-wave (0-1.5 Hz) and sigma (9-15 Hz) power, as well as sleep spindle density, amplitude and duration, were reduced, reminiscent of findings in several neuropsychiatric disorders. Together with previous findings implicating BF Npas1+neurons in stress responsiveness, the anatomical projections of BF Npas1+neurons and the effect of activating them suggest a possible role for BF Npas1+neurons in motivationally-driven wakefulness and stress-induced insomnia. Identification of this major subpopulation of BF GABAergic neurons will facilitate studies of their role in sleep disorders, dementia and other neuropsychiatric conditions involving BF.SIGNIFICANCE STATEMENTWe characterize a group of basal forebrain (BF) neurons in the mouse expressing neuronal PAS domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. BF Npas1+neurons are a major subset of GABAergic neurons distinct and more numerous than cholinergic, parvalbumin or glutamate neurons. BF Npas1+neurons target brain areas involved in arousal, motivation and olfaction. Activation of BF Npas1+neurons in the light (inactive) period increased wakefulness and the latency to sleep due to increased long wake bouts. Non-REM sleep slow waves and spindles were reduced reminiscent of findings in several neuropsychiatric disorders. Identification of this major subpopulation of BF GABAergic wake-promoting neurons will allow studies of their role in insomnia, dementia and other conditions involving BF.