Background: Deleterious effects of fluoride contamination in ground waters on the health of human beings are well known and intensive research on developing de-fluoridation methods is globally pursued. Of the various methodologies, increasing interest is being envisaged in using the adsorption methods based on active carbons derived from plant material. In the present investigation, Nitric acid activated carbon derived from barks of Vitex negundo plant (NVNC) is probed for its de-fluoridation abilities. Methods: The activated carbon is characterized adopting various physicochemical methods and surface morphological studies are carried out using FT-IR and SEM-EDX techniques. The effect of various parameters such as pH, sorbent dosage, agitation time, initial concentration of fluoride, temperature, particle size and presence of foreign ions on the extraction of the fluoride is studied adopting Batch methods.The adsorption process is analyzed with Freundlich, Langmuir, Temkin and Dubinin-Radushkevich (D-R) isotherms and kinetics of adsorption is studied using pseudo first-order, pseudo second-order, Weber and Morris intraparticle diffusion, Bangham's pore diffusion and Elovich equations. The methodology developed is applied to real ground water samples.