Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.black carbon | absorption | air quality | radiative forcing | climate B lack carbon (BC) particles, produced from incomplete fossil fuel combustion and biomass burning, are ubiquitous in the atmosphere and have profound impacts on air quality and climate (1-4). As a key short-lived climate forcer, the magnitude of BC direct radiative forcing (DRF) is dependent on the mixing state, i.e., whether particles are externally or internally mixed with other aerosol types (5, 6), and atmospheric aging by coating with secondary aerosol constituents (such as organics and sulfate) enhances the mass absorption cross-section (MAC) (5-9). Previous laboratory studies conducted under controlled experimental conditions yielded a broad range of MAC enhancements from 1.05 to 3.50, varying with the diameter, morphology, and coating of BC particles (7-15). On the other hand, a field measurement indicated a negligible absorption enhancement of ambient BC particles under a variable mixing state (16). In addition, BC aging and absorption enhancement also strongly impact visibility and atmospheric stability.Few direct measurements have been conducted to capture aging and quantify the related absorption variation of BC particles under ambient conditions. In particular, atmospheric measurements at fixed sites are affected by transport, local emissions, and chemistry, and quantification of the evolution in the BC properties (such as morphology, mixing state, and absorption and scattering coefficients) during aging involves complex decoupli...