High-N Ni-free stainless steels are used for their excellent mechanical properties combined with their high corrosion resistance, especially for biomedical applications. Even though it is well-known that secondary hardening during annealing after cold working has been observed in many materials, this phenomenon was not reported for these materials, one of the best known being Biodur108©, although numerous efforts have been made to increase its hardness. In this work, thermomechanical treatments at low temperature of cold-deformed Biodur108© were conducted to increase the hardness. Hardness as high as 830 Hv was obtained. For this material, the annealing of a deformed sample at intermediate temperature leads to a secondary hardening phenomenon. The mechanisms responsible for this secondary hardening were analyzed. It was found that for deformed samples, annealing at 575 °C leads to the formation of small Cr2N precipitates along grain boundaries and sub-grain boundaries, and simultaneously with a new body-centered cubic (BCC) phase that possesses a super structure. The newly formed phases have sub-micrometric grain sizes.