Significance: Statins, the most widely prescribed drugs in clinical practice, mainly act by reducing the plasma level of low-density lipoprotein (LDL)-cholesterol. A shift in redox homeostasis to an imbalance between reactive oxygen species generation and endogenous antioxidant mechanisms results in oxidative stress that has been implicated in the pathogenesis of various diseases, including those of the cardiovascular system. Beyond their efficacy in lowering LDL cholesterol, statins modulate redox systems that are implicated in the development of atherosclerosis, cardiovascular morbidity, and mortality. Recent Advances: Differences in specific statins or their dosages result in differential metabolic actions arising from off-target or unknown mechanisms of action that can have important implications for overall patient morbidity and mortality. Critical Issues: A recent meta-analysis and a combined analysis have suggested that high doses of statins increase the risk of developing type 2 diabetes mellitus, but reduce the risk of cardiovascular events. Thus, it is important to consider the cardiovascular and metabolic context and natural history of diseases when choosing a specific statin therapy for optimal individual patient health over the long term. Future Directions: More information is needed regarding the metabolism of statins, and the off-target or unknown actions of statins in affecting insulin resistance and metabolic homeostasis. The differential metabolic effects of specific statins should be considered in formulating optimal therapeutic strategies to reduce not just cardiovascular-related but also overall patient morbidity and mortality. Antioxid. Redox Signal. 20, 1286Signal. 20, -1299