Adhesion at copper-polyamide 11-copper and at aluminum-polyamide 11-aluminum laminate interfaces was studied. Metal-polymer-metal laminates were prepared by compression molding using processing conditions similar to the normal melt processing of polyamide 11. The results show that the time of contact at the molding temperature required to reach a constant level of adhesion is significant. Mild oxidation of the metal prior to molding improves the adhesion of polyamide 11 to aluminum; with copper, a monotonic slow decrease in adhesion with the oxidation time is observed. The presence of a metal surface affects the crystallization behavior of polyamide. With a cooling rate of 40-50°C/min, an approximately 15 µm transcrystalline polymer layer is formed with a degree of crystallinity that is almost 10% higher than the material away from the interface. The metal substrate surface oxidation prior to molding does not change the crystallinity profile of the polymer in the bulk. The polymer surface crystallinity is also a function of the time of contact with the metal substrate. The cooling rate and the metal substrate structure and its nucleating activity are responsible for the surface/bulk crystallinity ratio. Although the highly-crystalline polymer surface layer improves the adhesion to some extent, the formation of active species on the polymer surface which are able to react with the metal surface is mostly responsible for the increase of adhesion with time and its ultimate strength.