In recent years, tin halide perovskite solar cells (PKSCs) have emerged as a promising alternative to lead‐PKSCs. However, due to defects such as Sn4+ and iodide vacancies, their efficiency is lower than lead‐PKSCs. To address this issue, various strategies are proposed to improve the quality of perovskite, including copper iodide (CuI) doping. Unfortunately, the conventional solvent composition of DMF:DMSO = 4:1 has limited the solubility of CuI, resulting in inconsistent results and limited efficiency improvements. However, this research proposed a preprocessing method of CuI to decrease the defects and improve the perovskite layer's morphology. As a result, the efficiency of tin‐PKSCs with both P‐I‐N and hole transport layer (HTL) free structures is enhanced, increasing from 9.8% to 13.1% and 9.4% to 10.5%, respectively. Moreover, the doped tin‐PKSCs have exhibited better stability, retaining 75% of their initial power conversion efficiency (PCE) after being stored in a glovebox for 102 days.