This study investigated the influence of laser shock peening without coating (LSPw/oC) on the degradation of copper electrical contacts. A theoretical calculation of the plastic-affected depth (PAD) induced by LSPw/oC was performed, based on the laser-induced plasma pressure along with the Hugoniot elastic limit of our LSPw/oC experimental conditions. The theoretical PAD was obtained approximately 650 µm from the surface for the LSPw/oC at the laser energy density of 5.3 GW/cm2. Various characterization methods such as the Vicker’s hardness test, residual stress test, and electron backscattered diffraction (EBSD) mapping indicated the PAD may play a significant role in laser induced effective depth for LSPw/oC. At a laser energy density of 5.3 GW/cm2, the laser shock-peened copper showed approximately double the surface hardness as compared to the pure copper. This was attributed to grain refinement, which was confirmed by measuring average grain sizes, and by observing mechanical twin structures from the EBSD analysis. Additionally, a compressive residual stress was induced down to the PAD but gradually switched to a tensile residual stress below PAD. The surface hardening effect conferred by LSPw/oC to the pure copper surface resulted in excellent wear resistance, i.e., a low coefficient of friction and wear loss. As a result, the contact exhibited lower electrical resistance following the fretting friction test compared to pure copper; this would result in a significant delay in electrical contact failure.