Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Osteonecrosis (ON) is a debilitating orthopedic condition characterized by bone cell death due to impaired blood supply, leading to structural changes and disability. Osteoporosis (OP), a systemic skeletal disease, results in reduced bone density and quality, making bones fragile and prone to fractures. Although distinct, OP and ON share several risk factors such as corticosteroid use and smoking. This study aims to investigate the causal relationships between OP, bone mineral density (BMD), and ON using a bidirectional two-sample Mendelian randomization (MR) approach. Methods This study utilized genome-wide association study (GWAS) data for OP from the FinnGen database, and BMD data for the lumbar spine and femoral neck from the Genetic Factors for Osteoporosis (GEFOS) consortium. ON data were also obtained from the FinnGen database. All participants were of European descent. Genetic instruments were selected based on genome-wide significance, linkage disequilibrium, and strength (F-statistic). Bidirectional MR analysis was performed using inverse-variance weighted (IVW), MR-Egger regression, and weighted median methods to assess causality. Sensitivity analyses, including Cochran's Q test and MR-PRESSO, were conducted to evaluate heterogeneity and pleiotropy. Results MR analysis demonstrated a positive causal effect of OP on ON using the IVW method, with an odds ratio (OR) of 1.223 (95% CI: 1.026–1.459, P = 0.025). The weighted median method also confirmed this result with an OR (95% CI) 1.290 (1.021–1.630), P = 0.033. No significant causal effects were found between BMD (lumbar spine and femoral neck) and ON. Furthermore, ON did not exhibit a causal effect on OP or BMD. Sensitivity analyses confirmed the robustness of the results, showing no evidence of heterogeneity or pleiotropy. Conclusion This study provides evidence of a unidirectional causal relationship between OP and ON, suggesting that individuals with a genetic predisposition to OP have an increased risk of developing ON. These findings highlight the importance of early OP detection and management to potentially reduce ON incidence. The lack of a significant causal relationship between BMD and ON indicates that factors other than bone density, such as vascular health, may play a crucial role in ON development. Future research should explore these mechanisms further to inform clinical interventions.
Background Osteonecrosis (ON) is a debilitating orthopedic condition characterized by bone cell death due to impaired blood supply, leading to structural changes and disability. Osteoporosis (OP), a systemic skeletal disease, results in reduced bone density and quality, making bones fragile and prone to fractures. Although distinct, OP and ON share several risk factors such as corticosteroid use and smoking. This study aims to investigate the causal relationships between OP, bone mineral density (BMD), and ON using a bidirectional two-sample Mendelian randomization (MR) approach. Methods This study utilized genome-wide association study (GWAS) data for OP from the FinnGen database, and BMD data for the lumbar spine and femoral neck from the Genetic Factors for Osteoporosis (GEFOS) consortium. ON data were also obtained from the FinnGen database. All participants were of European descent. Genetic instruments were selected based on genome-wide significance, linkage disequilibrium, and strength (F-statistic). Bidirectional MR analysis was performed using inverse-variance weighted (IVW), MR-Egger regression, and weighted median methods to assess causality. Sensitivity analyses, including Cochran's Q test and MR-PRESSO, were conducted to evaluate heterogeneity and pleiotropy. Results MR analysis demonstrated a positive causal effect of OP on ON using the IVW method, with an odds ratio (OR) of 1.223 (95% CI: 1.026–1.459, P = 0.025). The weighted median method also confirmed this result with an OR (95% CI) 1.290 (1.021–1.630), P = 0.033. No significant causal effects were found between BMD (lumbar spine and femoral neck) and ON. Furthermore, ON did not exhibit a causal effect on OP or BMD. Sensitivity analyses confirmed the robustness of the results, showing no evidence of heterogeneity or pleiotropy. Conclusion This study provides evidence of a unidirectional causal relationship between OP and ON, suggesting that individuals with a genetic predisposition to OP have an increased risk of developing ON. These findings highlight the importance of early OP detection and management to potentially reduce ON incidence. The lack of a significant causal relationship between BMD and ON indicates that factors other than bone density, such as vascular health, may play a crucial role in ON development. Future research should explore these mechanisms further to inform clinical interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.