In this study, the neuroprotection of aucubin and its mechanism were evaluated in the rat model of diabetic encephalopathy. Diabetes mellitus (DM) rats were stratified by cognitive capability (CC), and assigned to four treatment groups for aucubin treatment (doses of 0, 1, 5 or 10 mg/kg aucubin), with a further two groups of non-DM rats ranked by CC as controls for aucubin (doses of 0 or 5 mg/kg aucubin). Neuroprotection was estimated by the indexes of behavior and histology. Behavioral testing was performed in a Y-maze. The surviving neurons in CA1-CA4 and subiculum (SC) of the hippocampus were counted under a microscope. In addition, the apoptotic neurons in the CA1 of the hippocampus were also examined by using TUNEL staining. In order to clarify the mechanism of aucubin's neuroprotection, the activities of endogenous antioxidants and nitric oxide synthase (NOS) together with the content of lipid peroxide in the hippocampus were assayed. The results proved that aucubin significantly reduced the content of lipid peroxide, regulated the activities of antioxidant enzymatic and decreased the activity of NOS. All these effects indicated that aucubin was a potential neuroprotective agent and its neuroprotective effects were achieved, at least in part, by promoting endogenous antioxidant enzymatic activities.