Genetic theories of sexual selection predict that most ornamental secondary sexual traits provide reliable indication of the genetic quality of their bearers. Accordingly, also the offspring of mates with elaborate mating display should perform better than those of less conspicuous counterparts. In this study, we used Arctic charr (Salvelinus alpinus) as a model species to investigate whether the variation in a carotenoid-based red breeding coloration (a sexually dichromatic trait) in different sexes would reflect differences in individual genetic variability, one measure of individual quality, and/or indirectly, be manifested in variation in the offspring's early viability and growth. We created maternal half-sibling families by artificially fertilizing the eggs with milt from bright-and pale-coloured males and then held the resulting progenies under identical hatchery conditions. The expression of red coloration among parental fish was not associated with their genetic diversity estimates in either sex nor did offspring sired by bright males consistently differ in terms of embryo survival or endogenous growth efficiency from offspring sired by pale males. By contrast, maternal effects were notably strong and, additionally, the degree of female coloration was negatively linked to their reproductive potential. The more intensely coloured females had a smaller relative fecundity and they also produced offspring of lower viability, implying a significant trade-off in resource allocation between ornamentation and offspring. Our results indicate that the red breeding ornamentation of Arctic charr is likely to be informative rather among females than males when the reproductive quality is predicted on grounds of the number of offspring produced. Nevertheless, this study does not support the direct selection hypothesis in explaining the evolution of female ornamentation, but rather suggests that the less intense coloration of female charr compared to males may reflect inter-sexual differences in the trade-off between natural and sexual selection.