. Regulation of the renal thiazidesensitive Na-Cl cotransporter, blood pressure, and natriuresis in obese Zucker rats treated with rosiglitazone. Am J Physiol Renal Physiol 289: F442-F450, 2005. First published April 5, 2005; doi:10.1152/ajprenal.00335.2004.-Previously, we showed an increase in protein abundance of the renal thiazide-sensitive Na-Cl cotransporter (NCC) in young, prediabetic, obese Zucker rats relative to lean age mates (Bickel CA, Verbalis JF, Knepper MA, and Ecelbarger CA. Am J Physiol Renal Physiol 281: F639 -F648, 2001). To test whether this increase correlated with increased thiazide sensitivity (NCC activity) and blood pressure, and could be modified by insulinsensitizing agents, we treated lean and obese Zucker rats (9 wk old) with either a control diet or this diet supplemented with 3 mg/kg body wt rosiglitazone (RGZ), a peroxisomal proliferator-activated receptor subtype ␥ agonist and potent insulin-sensitizing agent, for 12 wk (n ϭ 9/group). The rise in blood pressure, measured continuously by radiotelemetry, was significantly blunted in the RGZ-treated obese rats. Similarly, blood glucose and urinary albumin were markedly decreased in these rats. RGZ-treated rats whether lean or obese excreted a NaCl load faster but excreted less sodium in response to hydrochlorothiazide, applied as a novel in vivo measure of NCC activity. Obese rats had increased renal protein abundance and urinary excretion of NCC; however, this was not significantly reduced by RGZ (densitometry in cortex homogenate Ϫ %lean control): 100 Ϯ 9, 93 Ϯ 4, 124 Ϯ 9, and 141 Ϯ 14 for lean control, lean RGZ, obese control, and obese RGZ, respectively. Subcellular localization, as evaluated by confocal microscopy and immunoblotting following differential centrifugation, of NCC was not different between rat groups. Overall, RGZ reduced blood pressure and thiazide sensitivity; however, the mechanism(s) did not seem to involve a decrease in NCC protein abundance or cellular location. Decreased NCC activity may have contributed to the maintenance of normotension in RGZ-treated obese rats. insulin resistance; type II diabetes; TSC THE OBESE ZUCKER RAT is a model of gross obesity with marked insulin resistance coupled to mild hypertension. Dysregulation of sodium balance and pressure-natriuresis as a result of insulin resistance likely are major contributors to the rise in blood pressure. Previously, we (4) showed increased renal abundances of three major sodium transport proteins in the kidney of the obese Zucker rat relative to lean age mates at both 2 and 4 mo of age, i.e., the thiazide-sensitive Na-Cl cotransporter (NCC or TSC), the -subunit of the epithelial sodium channel (ENaC), and the ␣ 1 -subunit of Na-K-ATPase. These relative differences in protein abundance in the kidney seemed to be attenuated some in 6-mo-old rats, as the rats became fully diabetic and the kidneys hypertrophied (3). The mechanisms underlying these changes in abundance, i.e., transcriptional vs. changes in protein turnover rate, were not determined.T...