Plant protein ingredients are increasingly included in mullet feeds and are expected to be contaminated with mycotoxins (AFB1). Thus, this study investigated the protective role of Saccharomyces cerevisiae against oxidative stress and hepato-renal malfunction induced by AFB1 contamination in mullets. Four diets were formulated, where the first was kept as the control diet, and the second was supplemented with S. cerevisiae at 5 × 106 cells/g. The third diet was supplied with AFB1 at 1 mg/kg, and the fourth was supplemented with S. cerevisiae and AFB1. Mullet fed the control or both AFB1 and S. cerevisiae (yeast/AFB1) had similar FBW, WG, SGR, and FCR (P˃0.05). Mullet treated with S. cerevisiae without AFB1 contamination showed the highest FBW, WG, and SGR (P<0.05), while fish in the AFB1 group had lower FBW, WG, and SGR and higher FCR than fish in the control and yeast/AFB1 groups (P<0.05). Using yeast with AFB1 prevented pathological hazards and improved intestinal structure. Further, yeast combined with AFB1 reduced the degenerative changes and enhanced the histological structure except for a mild inflammatory reaction around the bile duct. Fish in the control or yeast/AFB1 group had higher HB, PCV, RBCs, and WBCs than fish in the AFB1 group (P<0.05). Fish fed the control, or the yeast/AFB1 diets had similar total protein and albumin levels with higher values than fish contaminated with AFB1 (P<0.05). Fish fed the control and yeast/AFB1 diets had similar ALT, AST, urea, and creatinine levels (P˃0.05) and were lower than fish contaminated with AFB1. Additionally, fish fed the control and yeast/AFB1 diets had similar CAT, GPx, SOD, and MDA (P˃0.05) and were lower than fish contaminated with AFB1 (P<0.05). In conclusion, incorporating S. cerevisiae ameliorated the negative impacts of AFB1 toxicity on mullets’ growth, hepato-renal function, and antioxidative capacity.