Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Saffron ( Crocus sativus L.) is a perennial, bulbous flower whose stigma is one of the most valuable spices, herbal medicines, and dyes. Light is an essential environmental regulator of plant growth, development, and metabolism. With the popularization of customized light-emitting diode (LED) light sources in facility agriculture, accurate light control has become essential for regulating crop yield and quality. In this study, white, red, and blue LED lights were applied to extend the photoperiod at the start and end of the day during the indoor stage of saffron cultivation. We investigated saffron growth and flowering using non-target metabolomic and transcriptome analyses to determine the flux and accumulation of metabolites from the stigma under different light treatments. Results The results revealed that supplemental red and white lights both promoted dry mass accumulation in the stigma, with the optimal appearance achieved using white light. Supplemental white light promoted saffron flowering, whereas supplemental blue light delayed it. Supplemental blue light promoted crocin-1 and crocin-3 accumulation, whereas supplemental red light promoted crocin-2 accumulation. Expression analysis of key genes and their correlations with crocin-related metabolites may provide useful information for screening functional genes involved in crocin synthesis. Conclusions This study provides useful information for future application of LED light to improve the planting technology, quality, and yield of saffron, and reveals underlying molecular information for the further research. Supplementary Information The online version contains supplementary material available at 10.1186/s12870-024-05944-2.
Background Saffron ( Crocus sativus L.) is a perennial, bulbous flower whose stigma is one of the most valuable spices, herbal medicines, and dyes. Light is an essential environmental regulator of plant growth, development, and metabolism. With the popularization of customized light-emitting diode (LED) light sources in facility agriculture, accurate light control has become essential for regulating crop yield and quality. In this study, white, red, and blue LED lights were applied to extend the photoperiod at the start and end of the day during the indoor stage of saffron cultivation. We investigated saffron growth and flowering using non-target metabolomic and transcriptome analyses to determine the flux and accumulation of metabolites from the stigma under different light treatments. Results The results revealed that supplemental red and white lights both promoted dry mass accumulation in the stigma, with the optimal appearance achieved using white light. Supplemental white light promoted saffron flowering, whereas supplemental blue light delayed it. Supplemental blue light promoted crocin-1 and crocin-3 accumulation, whereas supplemental red light promoted crocin-2 accumulation. Expression analysis of key genes and their correlations with crocin-related metabolites may provide useful information for screening functional genes involved in crocin synthesis. Conclusions This study provides useful information for future application of LED light to improve the planting technology, quality, and yield of saffron, and reveals underlying molecular information for the further research. Supplementary Information The online version contains supplementary material available at 10.1186/s12870-024-05944-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.