This study investigates the impact of substituting lactose with maltodextrin in milk–tea formulations to enhance their physicochemical and structural properties. Various lactose-to-maltodextrin ratios (100:0, 90:10, 85:15, 80:20, 75:25) were evaluated in both post-pasteurized and concentrated skim milk–tea (SM-T) and whole milk–tea (WM-T) formulations. Concentration significantly improved the zeta potential, pH, and browning index in both SM-T and WM-T compared to pasteurization. L:M ratios of 90:10 and 75:25 in WM-T and 90:10 and 80:20 in SM-T showed higher phenolic preservation after concentration due to structural changes resulting from the addition of maltodextrin and water removal during prolonged heating. The preservation effect of phenolic components in both WM-T and SM-T is governed by many mechanisms including pH stabilization, zeta potential modulation, protein interactions, complex formation, and encapsulation effects. Therefore, optimizing milk–tea stability and phenolic preservation through L:M ratio adjustments provides a promising approach for enhancing milk–tea properties.