With the advent of Industry 4.0, smart construction sites have seen significant development in China. However, accidents involving digitized tower cranes continue to be a persistent issue. Among the contributing factors, human unsafe behavior stands out as a primary cause for these incidents. This study aims to assess the human reliability of tower crane operations on smart construction sites. To proactively enhance safety measures, the research employs text mining techniques (TF-IDF-Truncated SVD-Complement NB) to identify patterns of human errors among tower crane operators. Building upon the SHEL model, the study categorizes behavioral factors affecting human reliability in the man-machine interface, leading to the establishment of the Performance Shaping Factors (PSFs) system. Furthermore, the research constructs an error impact indicator system for the intelligent construction site tower crane operator interface. Using the DEMATEL method, it analyzes the significance of various factors influencing human errors in tower crane operations. Additionally, the ISM-MICMAC method is applied to unveil the hierarchical relationships and driving-dependent connections among these influencing factors. The findings indicate that personal state, operating procedures, and physical environment directly impact human errors, while personal capability, technological environment, and one fundamental organizational management factor contribute indirectly.