Empirical records provide incontestable evidence for the global rise in carbon dioxide (CO2) concentration in the earth's atmosphere. Plant growth can be stimulated by elevation of CO2; photosynthesis increases and economic yield is often enhanced. The application of more CO2 can increase plant water use efficiency and result in less water use. After reviewing the available CO2 literature, we offer a series of priority targets for future research, including: 1) a need to breed or screen varieties and species of horticultural plants for increased drought tolerance; 2) determining the amount of carbon sequestered in soil from horticulture production practices for improved soil water-holding capacity and to aid in mitigating projected global climate change; 3) determining the contribution of the horticulture industry to these projected changes through flux of CO2 and other trace gases (i.e., nitrous oxide from fertilizer application and methane under anaerobic conditions) to the atmosphere; and 4) determining how CO2-induced changes in plant growth and water relations will impact the complex interactions with pests (weeds, insects, and diseases). Such data are required to develop best management strategies for the horticulture industry to adapt to future environmental conditions.