Effective DNA translocation into nanochannels is critical for advancing genome mapping and future single-molecule DNA sequencing technologies. We present the design and hydrodynamic study of a diamond-shaped gradient pillar array connected to nanochannels for enhancing the success of DNA translocation events. Single-molecule fluorescence imaging is utilized to interrogate the hydrodynamic interactions of the DNA with this unique structure, evaluate key DNA translocation parameters, including speed, extension, translocation time, etc., and provide a detailed mapping of the translocation events in nanopillar arrays coupled with 10 µm and 50 µm long channels. Our analysis reveals the important roles of diamond-shaped nanopillars in guiding DNA into as small as 30 nm channels with minimized clogging, stretching DNA to nearly 100 % of their dyed contour length, inducing location-specific straddling of DNA at nanopillar interfaces, and modulating DNA speeds by pillar geometries. Importantly, all critical features down to 30 nm-wide nanochannels are defined using standard photolithography * Address correspondence to wangch@asu.edu, gustavo@us.ibm.com.