Background/Aims: Stem cell-derived exosomes (EXs) offer protective effects on various cells via their carried microRNAs (miRs). Meanwhile, miR-210 has been shown to reduce mitochondrial reactive oxygen species (ROS) overproduction. In this study, we determined the potential effects of endothelial progenitor cell-derived EXs (EPC-EXs) on hypoxia/ reoxygenation (H/R) injured endothelial cells (ECs) and investigated whether these effects could be boosted by miR-210 loading. Methods: Human EPCs were used to generate EPCEXs, or transfected with scrambler control or miR-210 mimics to generate EPC-EXs sc and EPCEXs miR-210 . H/R-injured human ECs were used as a model for functional analysis of EXs on apoptosis, viability, ROS production and angiogenic ability (migration and tube formation) by flow cytometry, MTT, dihydroethidium and angiogenesis assay kits, respectively. For mechanism analysis, the mitochondrion morphology, membrane potential (MMP), ATP level and the expression of fission/fusion proteins (dynamin-related protein 1: drp1 and mitofusin-2: mfn2) were assessed by using JC-1 staining, ELISA and western blot, respectively. Results: 1) Transfection of miR-210 mimics into EPCs induced increase of miR-210 in EPC-EXs