The effects of solar storms occurring during the days 17 to 19 March 2013 and 2015, St. Patrick's Day intervals, on Schumann resonances (SRs) have been studied. To do this, the experimental data recorded by the Juan Antonio Morente extremely low frequency station located at Sierra Nevada, Spain, have been processed in order to obtain hourly averaged information on the first three resonance modes. Results are compared with monthly averages of the SR data for each hour to detect deviations from the regular behavior. Evidence of significant changes in the peak amplitudes and frequencies of the SRs have been identified in the station's measurements and related to the coronal mass ejection impact in the magnetosphere, detected by in situ plasma measurements onboard spacecraft in the solar wind. However, the complicated nature of the Schumann resonances, dependent on multiple variables and subject to multiple unavoidable interferences (e.g., lightning or human radio sources), in conjunction with the complex magnetosphere‐ionosphere‐atmosphere coupling processes, makes it difficult to conclude that the observed deviations are exclusively due to the solar events mentioned. Results extracted from only two solar events cannot be considered as conclusive, and therefore, independent comparison with results reported by other research would seem advisable in future works on this subject.