Molecular mechanisms of crystal growth and homogeneous nucleation from the melt of polyethylene-like linear polymer are investigated by molecular dynamics simulations. The present paper is aimed at extending our previous work with respect to the system size and the boundary condition, thereby enabling detailed studies on the structures of sufficiently large lamellae and fully equilibrated melt. Lamellae of uniform thickness but with marked tapered edges are found to grow at constant velocity from the substrate. Three-dimensional shape of the growing lamellae exhibits peculiar undulation at the growth front, the origin of which is suggested to be the inhomogeneous thickness distribution within the lamellae. Trajectories of chains crystallizing onto the growth front reveal an unexpected pathway for chain folding, where a partially attached chain stem forms a new fold by plunging its head back into a neighboring stem position through slithering snake motions of the chain. Detailed statistics of folds and cilia show that the folds are rather neat and mostly make re-entries into the nearest or the second or third nearest neighboring stem positions, whereas the cilia are generally short but with a small number of longer cilia forming thick amorphous layers. Structure of supercooled melt investigated versus temperature reveals that, at moderate degree of supercooling, the overall chain conformation remains Gaussian random coil but the persistent length of chains increases monotonically with increasing supercooling. Exceptions are at the largest supercooling where homogeneous nucleation takes place; usual melt structure becomes rapidly unstable and emerges many crystallites of random orientations. During early 10-20 ns after the quench, density of melt, radius of gyration of chains, and fraction of kinked bonds show marked alterations. These structural changes are highly cooperative and are considered simply due to the emergence of many embryonic crystals in the melt. Conformations of the chains forming nuclei are also traced to reveal that the homogeneous nuclei are fringed micelle like aggregates of chains, but the chains as a whole have folded conformations, which are similar to those reported in previous simulations on a single polyethylene in a vacuum.