Ionization current measured at the spark plug during combustion in spark ignition engines has often been proposed to determine the crank-angle at combustion pressure peak, namely the peak pressure angle, for the purpose of regulating spark timing to attain maximum brake torque (MBT). The proposal is based on the assumption that agreement exists between peak pressure angle and the angular position of the ionization current second peak, although no one has ever proved it by an appropriate statistical analysis. The aim of this work, for the first time and by rigorous statistical methods, is to prove the agreement between Peak Pressure Angle and Ionization Current Second Peak Angle (ICSPA), without which a MBT control via ICSPA would be ineffective. Our experimental database consisted of about 9000 pairs of Peak Pressure Angle and Ionization Current Second Peak Angle values corresponding to 90 different operating conditions of a spark ignition engine. A two-sample comparison was first carried out between mean values of Peak Pressure Angle and Ionization Current Second Peak Angle, which showed a statistically significant difference between them. Then Bland-Altman analysis (Lancet, 1986), widely known and used for checking agreement between two different measurement methods, was conducted. It demonstrated that under almost all the experimental operating conditions, there was no agreement between the Ionization Current Second Peak Angle and the Peak Pressure Angle.