Phosphorus (P) is the key limiting factor for eutrophication, and the mechanism of P loss from hillslopes is complex. Few attempts have been made to study the processes of P loss through overland flow and interflow from bare weathered granite slopes in Southeast China. Therefore, artificial rainfall simulations were performed to evaluate P loss from bare weathered granite slopes with different slope angles (5°, 8°, 15°, 25°) and different rainfall intensities (1.5, 2.0, 2.5 mm/min). The results show that overland flow increased with rainfall intensity, while it declined with slope angle. Interflow exhibited a single-peak curve with time of runoff. The interflow accounted for 28.53–89.12% of the total runoff yield, and the percentage declined with rainfall intensity and increased with slope angle. Both total phosphorus (TP) concentration (CTP) and TP load (LTP) in overland flow increased with rainfall intensity, and the percentages of LTP in each rainfall event ranged from 51% to 92%. CTP in overland flow distinctly fluctuated, with the maximum appearing on the 25° slope, while the maximum in interflow was observed on the 5° slope. LTP in overland flow was the highest on the 8° slope, and was significantly affected by runoff yield and rainfall intensity (p < 0.01). LTP in interflow was small and was significantly affected by rainfall intensity (p < 0.01). Runoff P was mainly lost through overland flow, dominantly in the form of particulate phosphorus (PP), and P loss through interflow was an important supplementation, mainly in the form of dissolved phosphorus (DP). These results provide underlying insights and scientific background for the control of P loss in bare weathered granite areas.