2022
DOI: 10.3389/fnhum.2022.891095
|View full text |Cite
|
Sign up to set email alerts
|

Effects of Exercise on Neural Changes in Inhibitory Control: An ALE Meta-Analysis of fMRI Studies

Abstract: It is widely known that exercise improves inhibitory control; however, the mechanisms behind the cognitive improvement remain unclear. This study analyzes the extant literature on the neuronal effects of exercise on inhibitory control functions. We searched four online databases (Pubmed, Scopus, PsycINFO, and Web of Science) for relevant peer-reviewed studies to identify eligible studies published before September 1, 2021. Among the 4,090 candidate studies identified, 14 meet the inclusion criteria, and the re… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
5
0
3

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(8 citation statements)
references
References 64 publications
(73 reference statements)
0
5
0
3
Order By: Relevance
“…Based on transfer effects reported in previous coordinative exercise training studies with and without tDCS [4,14,18,44], a cognitive test battery conducted 24 hours before and after the training period investigated the transfer effects of concurrent tDCS and motor practice. The tests and the measured parameters included: Visual and Verbal Memory Test-delayed recall and rate of forgetting (VVM) [45], d2-Test of Attention-concentration score (d2-R) [46], Eriksen Flanker task-accuracy and reaction time interference [47] and Trail making test (TMT)-time to completion in TMT-A (1-2-3-…), TMT-B (1-A-2-B-…) and Δ TMT (factoring out the time component of TMT while accounting for completion times in both subtests TMT A & B) [48,49].…”
Section: Transfer Testsmentioning
confidence: 99%
See 1 more Smart Citation
“…Based on transfer effects reported in previous coordinative exercise training studies with and without tDCS [4,14,18,44], a cognitive test battery conducted 24 hours before and after the training period investigated the transfer effects of concurrent tDCS and motor practice. The tests and the measured parameters included: Visual and Verbal Memory Test-delayed recall and rate of forgetting (VVM) [45], d2-Test of Attention-concentration score (d2-R) [46], Eriksen Flanker task-accuracy and reaction time interference [47] and Trail making test (TMT)-time to completion in TMT-A (1-2-3-…), TMT-B (1-A-2-B-…) and Δ TMT (factoring out the time component of TMT while accounting for completion times in both subtests TMT A & B) [48,49].…”
Section: Transfer Testsmentioning
confidence: 99%
“…Moreover, various training studies suggest transfer effects of motor balance training to relevant cognitive domains [13][14][15]. The neural overlap hypothesis predicts that behavioural transfer from motor practice to cognitive performance is sub-served by overlapping neural circuits [16][17][18]; and its underlying mechanisms are hypothesized to occur during the acquisition period of a new skill [19]. Despite these observational neuroimaging and behavioural findings, the causal role of the PFC in motor balance learning and its potential to mediate learning-induced cognitive transfer remains unclear.…”
Section: Introductionmentioning
confidence: 99%
“…These findings highlight the age-dependent effects of exercise, particularly within the parietal lobe and brain regions associated with DMN. Besides, when focusing on the inhibitory control aspect of executive function, exercise has demonstrated the ability not only to elicit brain activation in the superior frontal gyrus (SFG), superior temporal gyrus (STG), precuneus, and cuneus, but also to reduce activations in the DMN-related regions, precentral area, and limbic system 22 . Collectively, this cumulative evidence supported that exercise interventions influence brain regions associated with the inhibitory control of executive function, encompassing both the frontoparietal networks and the DMN, regardless of age.…”
Section: Introductionmentioning
confidence: 99%
“…A c c e p t e d https://engine.scichina.com/doi/10.1360/TB-2024-0034 强的功能连接,在检索阶段观察到更高的眶额皮质节点效率和度中心性 [37] 。此外,身体活动对 老年人记忆功能的有益影响独立于其运动强度, 与前额叶和扣带皮层局部灰质体积的增加以及脑 源性神经营养因子(brain-derived neurotrophic factor,BDNF)水平(趋势)呈正相关 [38] 。针对 不同的记忆能力,运动对老年人大脑似乎有更广泛的影响。例如,有研究发现,12 周瑜伽干预 导致的老年人言语记忆能力的提高, 与语言处理网络和左额叶、 下丘脑之间的连接增加呈正相关, 而视觉空间记忆的改善与上顶叶网络和内侧顶叶皮层之间的连接呈负相关 [39] 。最新的一项研究 则发现,运动促进老年人工作记忆的脑结构机制可能涉及运动对中央前回、辅助运动区、额叶、 前/中部扣带回和直回灰质体积以及距状旁回/楔前叶脑沟深度的保护作用,尤其是右侧前/中部扣 带回灰质体积可能是中高强度身体活动影响老年人工作记忆能力高低的关键脑区 [40] 。 2.4 身体活动与抑制控制 抑制控制作为一种基础的认知机制,主要负责阻止或压抑无关信息或行为,以减少其对当 前信息加工的影响。最新的激活似然估计(activation likelihood estimation, ALE)元分析揭示了 运动改善抑制控制的神经机制,确定了 10 个运动诱导的神经核团,包括颞上回、楔前叶、额上 回、楔前叶、楔前叶、尾状核、后扣带、颞中回、海马旁回和中央前回等,并涉及额顶网络、默 认网络和视觉网络 [41] 。有研究发现,高强度间歇运动对抑制控制的改善效果最好,并能减少 N2 的潜伏期 [42] 。然而,也有研究得出不一致的结论,即运动时虽然振荡脑活动增加,并且在中高 强度运动期间这种增加比轻度运动更高,但是对抑制控制的影响没有强度差异 [43] 。 此外,运动对抑制控制影响还存在年龄差异。例如,有研究考察了习惯性锻炼对不同年龄 群体抑制控制的影响,结果发现,在年轻群体中,干扰控制任务(即 Flanker 任务)下,一致条 件诱发的 P3b 活动峰值明显早于不一致条件,而在中年经常锻炼的群体中未发现这一差异 [44] 。 研究者进一步发现,在停止信号任务中,年轻与中年习惯锻炼者的 P3b 活动比非锻炼者更大, 峰值更早,表明中青年经常锻炼者的反应抑制能力更强。该研究还发现,运动对中年女性抑制控 制的保护作用似乎优于男性。另一研究的结果表明,15 分钟中等强度有氧运动可以引起至少维 持 30 分钟的抑制控制的改善,但年轻人在运动后情绪唤醒状态显著增加,而老年人则倾向于表 现出前额叶中部神经活动的增加 [45] 。 对于运动对年轻群体抑制控制的影响,有研究发现,与低体质水平的儿童(9-10 岁)相比, 高体质水平的同龄人在 Flanker 任务中有更强的抑制控制能力,同时其背侧纹状体体积更大 [26] 。 尽管心理社会压力对青少年认知和前额叶活动有负面影响, 但平时的身体活动水平与应激诱发前 后的抑制控制表现无关 [46] 。一项纳入 214 名参与者的队列研究发现,儿童时期(<12 岁)运动参 与可以正向预测以后生活中的反应抑制能力,并且这种关联可以通过神经元回路的变化来调节,…”
unclassified