Adaptations to long-term exercise training in type 1 diabetes are sparsely studied. We examined the effects of a 1-year individualized training intervention on cardiorespiratory fitness, exercise-induced active muscle deoxygenation, and glycemic control in adults with and without type 1 diabetes. Eight men with type 1 diabetes (T1D) and 8 healthy men (CON) matched for age, anthropometry, and peak pulmonary O2 uptake, completed a 1-year individualized training intervention in an unsupervised real-world setting. Before and after the intervention, the subjects performed a maximal incremental cycling test, during which alveolar gas exchange (volume turbine and mass spectrometry) and relative concentration changes in active leg muscle deoxygenated (Δ[HHb]) and total (Δ[tHb]) hemoglobin (near-infrared spectroscopy) were monitored. Peak O2 pulse, reflecting peak stroke volume, was calculated (peak pulmonary O2 uptake/peak heart rate). Glycemic control (glycosylated hemoglobin A1c (HbA1c)) was evaluated. Both T1D and CON averagely performed 1 resistance-training and 3–4 endurance-training sessions per week (∼1 h/session at ∼moderate intensity). Training increased peak pulmonary O2 uptake in T1D (p = 0.004) and CON (p = 0.045) (group × time p = 0.677). Peak O2 pulse also rose in T1D (p = 0.032) and CON (p = 0.018) (group × time p = 0.880). Training increased leg Δ[HHb] at peak exercise in CON (p = 0.039) but not in T1D (group × time p = 0.052), while no changes in leg Δ[tHb] at any work rate were observed in either group (p > 0.05). HbA1c retained unchanged in T1D (from 58 ± 10 to 59 ± 11 mmol/mol, p = 0.609). In conclusion, 1-year adherence to exercise training enhanced cardiorespiratory fitness similarly in T1D and CON but had no effect on active muscle deoxygenation or glycemic control in T1D.