The epithelial isoform of the Na ؉ /H ؉ exchanger, NHE3, associates with at least two related regulatory factors called NHERF1/EBP50 and NHERF2/TKA-1/ E3KARP. These factors in addition interact with the cytoskeletal protein ezrin, which in turn binds to actin. The possible linkage of NHE3 with the cytoskeleton prompted us to test the effect of actin-modifying agents on NHE3 activity. Cytochalasins B and D and latrunculin B, which interfere with actin polymerization, induced a profound inhibition of NHE3 activity. The effect was isoform-specific inasmuch as the "housekeeping" exchanger NHE1 was virtually unaffected. Cytoskeletal disorganization was associated with a subcellular redistribution of NHE3, which accumulated at sites where actin aggregated, suggesting a physical interaction of exchangers with the cytoskeleton. An interaction was further suggested by the co-sedimentation of a detergent-insoluble fraction of NHE3 with the actin cytoskeleton. Inhibition of transport was not due to diminution in the number of transporters at the plasmalemma. Functional analyses of NHE1/NHE3 chimeras revealed that the cytoplasmic domain of NHE3 conferred sensitivity to cytochalasin B. Progressive carboxyl-terminal and internal deletions of the cytoplasmic region of NHE3 indicated that the region between residues 650 and 684 is critical for this response. This region overlaps with the domain reported to interact with NHERF and also contains a putative ezrin-binding site; hence, it likely plays a role in interactions with the cytoskeleton.