Abstract. Accurate simulation of ammonia (NH3) volatilization
from fertilized croplands is crucial to enhancing fertilizer-use efficiency
and alleviating environmental pollution. In this study, a process-oriented
model, CNMM–DNDC (Catchment Nutrient Management Model–DeNitrification–DeComposition), was evaluated and modified using NH3
volatilization observations from 44 and 19 fertilizer application events in
cultivated uplands and paddy rice fields in China, respectively. The major
modifications for simulating NH3 volatilization from cultivated uplands were primarily derived from a peer-reviewed and published study. NH3 volatilization from cultivated uplands was jointly regulated by wind speed, soil depth, clay fraction, soil temperature, soil moisture, vegetation canopy, and rainfall-induced canopy wetting. Moreover, three principle modifications were made to simulate NH3 volatilization from paddy rice fields. First, the simulation of the floodwater layer and its pH were added.
Second, the effect of algal growth on the diurnal fluctuation in floodwater
pH was introduced. Finally, the Jayaweera–Mikkelsen model was introduced to
simulate NH3 volatilization. The results indicated that the original
CNMM–DNDC not only performed poorly in simulating NH3 volatilization
from cultivated uplands but also failed to simulate NH3 volatilization
from paddy rice fields. The modified model showed remarkable performances in simulating the cumulative NH3 volatilization of the calibrated and
validated cases, with drastically significant zero-intercept linear
regression of slopes of 0.94 (R2 = 0.76, n = 40) and 0.98 (R2 = 0.71, n = 23), respectively. The simulated NH3 volatilization from cultivated uplands was primarily regulated by the dose and type of the nitrogen fertilizer and the irrigation implementation, while the simulated NH3 volatilization from rice paddy fields was sensitive to soil pH; the dose and depth of nitrogen fertilizer application; and flooding management strategies, such as floodwater pH and depth. The modified model is acceptable to compile regional or national NH3 emission inventories and develop strategies to alleviate environmental pollution.