Intestinal ischemia/reperfusion (I/R) is a complex phenomenon that causes destruction of both local and remote tissues. The objective of this study was to investigate the possible participation of oxidized low-density lipoproteins (oxLDLs) and inducible nitric oxide synthase (iNOS) expression in renal tissue damage after intestinal I/R. The superior mesenteric artery was blocked for 30 minutes, followed by 24 hours of reperfusion. At the end of the reperfusion period, renal tissues were removed; the presence of oxLDL, superoxide dismutase enzyme activity, malondialdehyde levels, and iNOS expression were evaluated. I/R resulted in positive oxLDL staining in renal tissue. Compared with control rats, tissue from the I/R group showed significantly higher malondialdehyde levels and lower superoxide dismutase enzyme activity. Strong and diffuse iNOS expression was present in the I/R group. Our findings support the hypothesis that I/R of intestinal tissue results in oxidative and nitrosative stress and enhances lipid peroxidation in the end organ. These data show that oxLDL accumulates in rat renal tissue after intestinal I/R. Antioxidant strategies may provide organ protection in patients with reperfusion injury, at least by affecting interactions with free radicals, nitric oxide, and oxLDL. This study demonstrates for the first time that oxLDL may play a role in renal tissue damage after intestinal I/R. Antioxidant strategies may be beneficial for protection from reperfusion injury.