Silicon plays a crucial role in enhancing plant tolerance to various abiotic and biotic stresses, including drought, salinity, heavy metals, and pathogen/pest attacks. Its application has shown promising results in improving stress tolerance and productivity in medicinal plants. This review synthesizes findings from numerous studies investigating the mechanisms by which silicon confers stress tolerance, including the regulation of antioxidant systems, water relations, nutrient homeostasis, phytohormone signaling, and stress-responsive gene expression. Additionally, it examines the effects of silicon supplementation on the production of valuable secondary metabolites and essential oils in medicinal plants. Silicon application can significantly mitigate stress-induced damage in plants, including medicinally important species such as borage, honeysuckle, licorice, Damask rose, savory, basil, and eucalyptus. The deposition of silicon in cell walls provides physical reinforcement and acts as a barrier against pathogen invasion and insect herbivory. Furthermore, silicon fertilization can enhance the production of valuable secondary metabolites in medicinal crops under stress conditions. The findings underscore the potential of silicon fertilization as a sustainable strategy for improving the productivity and quality of medicinal crops under changing environmental conditions, highlighting the need for further research to elucidate the molecular mechanisms underlying silicon-mediated stress tolerance and practical applications in medicinal plant cultivation.