Many environmental features are cyclic, with predictable daily and yearly changes which vary across latitudes. Organisms cope with such change using internal timekeepers or circadian clocks which have evolved remarkable flexibility. This flexibility is evident in the waveforms of behavioural and underlying molecular rhythms. In today's world, many ecosystems experience artificial light at night, leading to unusual photoperiodic conditions. Additionally, occupational demands expose many humans to unconventional light cycles. Yet, practical means of manipulating activity waveforms for beneficial purposes are lacking. This requires an understanding of principles and factors governing waveform plasticity of activity rhythms. Even though waveform plasticity remains underexplored, few recent studies have used novel light regimes, inspired by shift work schedules, with alternating bright light and dim light (LDimLDim) to manipulate the activity waveform of nocturnal rodents. We undertook this study to understand what aspects of light regimes contribute to waveform flexibility and how the underlying neuronal circuitry regulates the behaviour by subjecting Drosophila melanogaster to novel light regimes. Using a range of LDimLDim regimes, we found that dim scotopic illumination of specific durations induces activity bifurcation in fruit flies, similar to mammals. Thus, we suggest evolutionarily conserved effects of features of the light regime on waveform plasticity. Further, we demonstrate that the circadian photoreceptor CRYPTOCHROME is necessary for activity bifurcation. We also find evidence for circadian reorganisation of the pacemaker circuit wherein the evening neurons regulate the timing of both bouts of activity under novel light regimes. Thus, such light regimes can be explored further to understand the dynamics and coupling within the circadian circuit. The conserved effects of specific features of the light regime open up the possibility of designing other regimes to test their physiological impact and leverage them for waveform manipulation to minimise the ill effects of unusual light regimes.