Animal, and insect walking (locomotion) in particular, have attracted much attention from scientists over many years up to now. The investigations included behavioral, electrophysiological experiments, as well as modeling studies. Despite the large amount of material collected, there are left many unanswered questions as to how walking and related activities are generated, maintained, and controlled. It is obvious that for them to take place, precise coordination within muscle groups of one leg and between the legs is required: intra‐ and interleg coordination. The nature, the details, and the interactions of these coordination mechanisms are not entirely clear. To help uncover them, we made use of modeling techniques, and succeeded in developing a six‐leg model of stick‐insect walking. Our main goal was to prove that the
same
model can mimic a variety of walking‐related behavioral modes, as well as the most common coordination patterns of walking just by changing the values of a few input or internal variables. As a result, the model can reproduce the basic coordination patterns of walking: tetrapod and tripod and the transition between them. It can also mimic stop and restart, change from forward‐to‐backward walking and back. Finally, it can exhibit so‐called search movements of the front legs both while walking or standing still. The mechanisms of the model that enable it to produce the aforementioned behavioral modes can hint at and prove helpful in uncovering further details of the biological mechanisms underlying walking.