Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The dung beetle primarily feeds on the feces of herbivorous animals and play a crucial role in ecological processes like material cycles and soil improvement. This study aims to explore the diversity and composition of the gut microbiota of Catharsius molossus (a renowned dung beetle originating from China and introduced to multiple countries for its ecological value) and exploring whether these gut microbes are transmitted vertically across generations. Using 16S rRNA and ITS rRNA gene sequencing techniques, we described the diversity and composition of gut microbes in C. molossus from different localities and different developmental stages (Egg, young larvae and old larvae). We discovered that the diversity of gut microbiota of dung beetles varied obviously among different geographical localities and different developmental stages, and we also discussed the potential influencing factors. Interestingly, the microbial community structure within the brood balls is more similar to male dung beetle than to that of females, which is consistent with the observation that the brood ball is constructed by the male dung beetle, with the female laying egg in it at the final step. This unique breeding method facilitates offspring in inheriting microbial communities from both the mother and the father. Initially, the larvae’s gut microbiota closely mirrors that of the parental gift in these brood balls. As larvae grow, significant changes occur in their gut microbiota, including an increase in symbiotic bacteria like Lactococcus and Enterococcus. Analysis of the gut bacteria of adult dung beetles across various localities and different developmental stages identified nine core genera in adults, contributing to 67.80% of the total microbial abundance, and 11 core genera in beetles at different developmental stages, accounting for 49.13% of the total. Notably, seven genera were common between these two core groups. Our results suggest that Parental gifts can play a role in the vertical transmission of microbes, and the abundance of probiotics increases with larval development, supporting the hypothesis that "larval feeding behavior occurs in two stages: larvae first feed on parental gifts to acquire necessary microbes, then enrich symbiotic microbiota through consuming their own feces."
The dung beetle primarily feeds on the feces of herbivorous animals and play a crucial role in ecological processes like material cycles and soil improvement. This study aims to explore the diversity and composition of the gut microbiota of Catharsius molossus (a renowned dung beetle originating from China and introduced to multiple countries for its ecological value) and exploring whether these gut microbes are transmitted vertically across generations. Using 16S rRNA and ITS rRNA gene sequencing techniques, we described the diversity and composition of gut microbes in C. molossus from different localities and different developmental stages (Egg, young larvae and old larvae). We discovered that the diversity of gut microbiota of dung beetles varied obviously among different geographical localities and different developmental stages, and we also discussed the potential influencing factors. Interestingly, the microbial community structure within the brood balls is more similar to male dung beetle than to that of females, which is consistent with the observation that the brood ball is constructed by the male dung beetle, with the female laying egg in it at the final step. This unique breeding method facilitates offspring in inheriting microbial communities from both the mother and the father. Initially, the larvae’s gut microbiota closely mirrors that of the parental gift in these brood balls. As larvae grow, significant changes occur in their gut microbiota, including an increase in symbiotic bacteria like Lactococcus and Enterococcus. Analysis of the gut bacteria of adult dung beetles across various localities and different developmental stages identified nine core genera in adults, contributing to 67.80% of the total microbial abundance, and 11 core genera in beetles at different developmental stages, accounting for 49.13% of the total. Notably, seven genera were common between these two core groups. Our results suggest that Parental gifts can play a role in the vertical transmission of microbes, and the abundance of probiotics increases with larval development, supporting the hypothesis that "larval feeding behavior occurs in two stages: larvae first feed on parental gifts to acquire necessary microbes, then enrich symbiotic microbiota through consuming their own feces."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.