2 Dry bean along with rice is a staple food for the population of South America. In this tropical region beans are grown on Oxisols and phosphorus (P) is one of the most yield limiting factors for dry bean production on these soils. A greenhouse experiment was conducted to evaluate P use efficiency in 20 elite dry bean genotypes grown at deficient (25 mg P kg −1 soil) and sufficient (200 mg P kg −1 ) levels of soil P. Grain yields and yield components were significantly increased with P fertilization and, interspecific genotype differences were observed for yield and yield components. The grain yield efficiency index (GYEI) was having highly significant quadratic association with grain yield. Based on GYEI most P use efficient genotypes were CNFP 8000, CNFP 10035, CNFP10104, CNFC 10410, CNFC 9461, CNFC 10467, CNFP 10109 and CNFP 10076 and most inefficient genotypes were CNFC 10438, CNFP 10120, CNFP 10103, and CNFC 10444. Shoot dry weight, number of pods per plant, 100-grain weights and number of seeds per pod was having significant positive association with grain yield. Hence, grain yield of dry bean can be improved with the improvement of these plant traits by adopting appropriate management practices. Soil pH, extractable P and calcium (Ca) saturation were significantly influenced by P treatments. Based on regression equation, optimum pH value in water was 6.6, optimum P in Mehlich 1 extraction solution was 36 mg kg −1 and optimum Ca saturation value was 37% for dry maximum bean yield.