The rising prevalence of neurodegenerative disorders underscores the urgent need for effective interventions to prevent neuronal cell death. This study evaluates the neuroprotective potential of phytosome-encapsulated 6-gingerol- and 6-shogaol-enriched extracts from Zingiber officinale Roscoe (6GS), bioactive compounds renowned for their antioxidant and anti-inflammatory properties. The novel phytosome encapsulation technology employed enhances the bioavailability and stability of these compounds, offering superior therapeutic potential compared to conventional formulations. Additionally, the study investigates the role of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)-signaling pathway, a key mediator of the neuroprotective effects of 6GS. Neurotoxicity was induced in SH-SY5Y cells (a human neuroblastoma cell line) using 200 μM of hydrogen peroxide (H2O2), following pretreatment with 6GS at concentrations of 15.625 and 31.25 μg/mL. Cell viability was assessed via the MTT assay alongside evaluations of reactive oxygen species (ROS), antioxidant enzyme activities (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px]), oxidative stress markers (malondialdehyde [MDA]), and molecular mechanisms involving the PI3K/Akt pathway, apoptotic factors (B-cell lymphoma-2 [Bcl-2] and caspase-3), and inflammatory markers (tumor necrosis factor-alpha [TNF-α]). The results demonstrated that 6GS significantly improved cell viability, reduced ROS, MDA, TNF-α, and caspase-3 levels, and enhanced antioxidant enzyme activities. Furthermore, 6GS treatment upregulated PI3K, Akt, and Bcl-2 expression while suppressing caspase-3 activation. Activation of the PI3K/Akt pathway by 6GS led to phosphorylated Akt-mediated upregulation of Bcl-2, promoting neuronal survival and attenuating oxidative stress and inflammation. Moreover, Bcl-2 inhibited ROS generation, further mitigating neurotoxicity. These findings suggest that phytosome encapsulation enhances the bioavailability of 6GS, which through activation of the PI3K/Akt pathway, exhibits significant neuroprotective properties. Incorporating these compounds into functional foods or dietary supplements could offer a promising strategy for addressing oxidative stress and neuroinflammation associated with neurodegenerative diseases.