Cadmium (Cd2+) pollution in soil and water bodies is a significant environmental concern, necessitating effective remediation strategies. Traditional methods often fall short in efficiency, cost-effectiveness, and environmental sustainability. This study develops and evaluates the effectiveness of chitosan–gelatin–hydroxypropyl methylcellulose (CS-GEL-HPMC) membranes for Cd2+ removal from polluted environments. CS-GEL-HPMC membranes were synthesized with varying HPMC concentrations. Their structural and morphological characteristics were analyzed using UV–visible absorption spectroscopy and FT-IR. The membranes’ stability across different pH levels and their morphological traits were assessed. The adsorption efficiency for Cd2+ ions was evaluated in both aqueous solutions and soil environments under varying conditions of pH, initial ion concentration, and contact time. The CS-GEL-HPMC membranes demonstrated significant structural integrity and stability, especially at higher HPMC concentrations. UV–visible and FT-IR analyses confirmed the successful integration of HPMC into the CS-GEL matrix. In aqueous solutions, the membranes exhibited efficient Cd2+ adsorption, with the best performance observed for the CS30-GEL30-HPMC40 membrane. The adsorption capacity was influenced by contact time, initial Cd2+ concentration, and pH. In soil treatments, the membranes effectively reduced Cd2+ concentrations, with higher membrane dosages yielding better results. The incorporation of additives like (hydroxyapatite) HAP, fly ash (FA), and cement further enhanced the remediation efficiency. In summary, CS-GEL-HPMC membranes, particularly when combined with additives, emerge as a promising, sustainable solution for Cd2+ remediation in both soil and water bodies. This study highlights the potential of biopolymer-based composites in environmental clean-up efforts, offering a novel approach that is both effective and eco-friendly.