To improve the luminescent efficiency of and to design the color spectrum of phosphors, the comprehensive understanding of the correlation between physical parameters and luminescent properties is imperative, necessitating systematic experimental studies. However, unintentional variations across individually prepared samples impede the thorough investigation of the correlation. In this study, we investigate the possible sources of unintentional variation in the photoluminescence properties of phosphors during sample preparation using a solid-state reaction, explicitly focusing on the ball milling process. Based on the quantitative features of the photoluminescent properties and their associated statistical errors, we explore the impact of unintentional variation alongside intended systematic variation, highlighting its potential to obscure meaningful trends.