We patterned a perovskite film to fabricate thin-film transistors (TFTs) and investigated the effect of patterning on the electrical performance of the TFTs. We used a simple and effective patterning method, i.e., wet-assisted mechanical exfoliation. The perovskite films with 3 different thicknesses were fabricated using spin coating at 1,000, 2,000, and 4,000 rpm. Finally, we evaluated the performance of these TFTs. It was estimated that the film fabricated at 1,000 rpm spinning speed had the highest performance. In the best case the mobility of the TFTs reached up to 2.11 cm 2 /V⋅s, and very much depends on the active channel size. The proposed patterning technique enables perovskite semiconductor materials to be used in high-density arrays. In addition, it can be used for the production of electronic devices in various fields.