The 450-m long spit that extends westward from the northwest corner of Isla San Luis Gonzaga is one of the largest and most complex constructions of unconsolidated cobbles and boulders found anywhere in Mexico’s Gulf of California. The material source derives from episodic but intense storm erosion along the island’s andesitic cliff face with steep northern exposures. A well-defined marine terrace from the late Pleistocene cuts across the same corner of the island and provides a marker for the subsequent development of the spit that post-dates tectonic-eustatic adjustments. A total of 660 individual andesite clasts from seven transects across the spit were measured for analyses of change in shape and size. These data are pertinent to the application of mathematical formulas elaborated after Nott (2003) and subsequent refinements to estimate individual wave heights necessary for lift from parent sea cliffs and subsequent traction. Although the ratio of boulders to clasts diminishes from the proximal to distal end of the structure, relatively large boulders populate all transects and the average wave height required for the release of joint-bound blocks at the rocky shore amounts to 5 m. Based on the region’s historical record of hurricanes, such storms tend to decrease in intensity as they migrate northward through the Gulf of California’s 1100-km length. However, the size and complexity of the San Luis Gonzaga spit suggests that a multitude of extreme storm events impacted the island in the upper gulf area through the Holocene time, yielding a possible average growth rate between 7 and 8 m/century over the last 10,000 years. In anticipation of future storms, a system to track the movement of sample boulders should be emplaced on the San Luis Gonzaga spit and similar localities with major coastal boulder deposits.