Background: As the commonest form of ischemic heart diseases, the Myocardial Ischemia-Reperfusion injury (MI/RI) accounts for almost 50 percent of all deaths. The prevention and treatment of MI/RI while reducing the mortality of myocardial infarction has become a raging topic of research in the cardiovascular field. At present, there are no effective drugs for the treatment of MI/RI. Hence, it becomes imperative to identify or develop efficient lead compounds for treating MI/RI. It has been reported that the Ganjiang Fuzi Decoction (GFD) could be used for the effective treatment of MI/RI due to its promotion of vasodilation and vascular endothelial cell proliferation besides reducing the oxidative damage. Methods: The network pharmacological methods were used in this study, for analyzing the biological processes and the molecular mechanisms of the GFD for MI/RI treatment. In vitro and in vivo experiments were performed for verification of the results of the network pharmacological predictions. Results: Around 16 active components of GFD were discovered against MI/RI, where aconitine, 6-ginger, mesaconitine, and hypaconitine were the leading ones with regard to the degree value. Moreover, it was found that 88 MI/RI-related targets mainly involved six aspects, apoptosis, oxidative stress, inflammation, mitochondrial energy metabolism, and vasodilation. In vitro studies indicated the ability of the GFD to increase the survival rate, decrease the apoptosis rate, reduce oxidative damage, and increase the expression of HIF-1α, VEGF, and eNOS in hypoxia/reoxygenation(H/R) injured Rat Vascular Endothelial Cells (RVEC). The in vivo studies illustrated the capacity of the GFD to reduce the myocardial tissue damage and the infarction area, while increasing the expression of HIF-1α, VEGF, and eNOS in the MI/RI rats. Conclusions: The results of this study confirmed the anti-MI/RI role of the GFD through the activation of the HIF-1α signaling pathway, promotion of vascular proliferation and dilation, and the reduction in oxidative damage. The findings of this study would further provide experimental evidence for the application of the GFD in the treatment of MI/RI.