When a cognitive ability is assessed repeatedly, test scores and ability estimates are often observed to increase across test sessions. This phenomenon is known as the retest (or practice) effect. One explanation for retest effects is that situational test anxiety interferes with a testee’s performance during earlier test sessions, thereby creating systematic measurement bias on the test items (interference hypothesis). Yet, the influence of anxiety diminishes with test repetitions. This explanation is controversial, since the presence of measurement bias during earlier measurement occasions cannot always be confirmed. It is argued that people from the lower end of the ability spectrum become aware of their deficits in test situations and therefore report higher anxiety (deficit hypothesis). In 2014, a structural equation model was proposed that specifically allows the comparison of these two hypotheses with regard to explanatory power for the negative anxiety–ability correlation found in cross-sectional assessments. We extended this model for usage in longitudinal studies to investigate the impact of test anxiety on test performance and on retest effects. A latent neighbor-change growth curve was implemented into the model that enables an estimation of retest effects between all pairs of successive test sessions. Systematic restrictions on model parameters allow testing the hypothetical reduction in anxiety interference over the test sessions, which can be compared to retest effect sizes. In an empirical study with seven measurement occasions, we found that a substantial reduction in interference upon the second test session was associated with the largest retest effect in a figural matrices test, which served as a proxy measure for general intelligence. However, smaller retest effects occurred up to the fourth test administration, whereas evidence for anxiety-induced measurement bias was only produced for the first two test sessions. Anxiety and ability were not negatively correlated at any time when the interference effects were controlled for. Implications, limitations, and suggestions for future research are discussed.